A new phase transformation path from nanodiamond to new-diamond via an intermediate carbon onion.
نویسندگان
چکیده
The investigation of carbon allotropes such as graphite, diamond, fullerenes, nanotubes and carbon onions and mechanisms that underlie their mutual phase transformation is a long-standing problem of great fundamental importance. New diamond (n-diamond) is a novel metastable phase of carbon with a face-centered cubic structure; it is called "new diamond" because many reflections in its electron diffraction pattern are similar to those of diamond. However, producing n-diamond from raw carbon materials has so far been challenging due to n-diamond's higher formation energy than that of diamond. Here, we, for the first time, demonstrate a new phase transformation path from nanodiamond to n-diamond via an intermediate carbon onion in the unique process of laser ablation in water, and establish that water plays a crucial role in the formation of n-diamond. When a laser irradiates colloidal suspensions of nanodiamonds at ambient pressure and room temperature, nanodiamonds are first transformed into carbon onions serving as an intermediate phase, and sequentially carbon onions are transformed into n-diamonds driven by the laser-induced high temperature and high pressure from the carbon onion as a nanoscaled temperature and pressure cell upon the process of laser irradiation in a liquid. This phase transformation not only provides new insight into the physical mechanism involved, but also offers one suitable opportunity for breaking controllable pathways between n-diamond and carbon allotropes such as diamond and carbon onions.
منابع مشابه
Bucky-wires and the instability of diamond (111) surfaces in one-dimension.
Recent advances in the fabrication and characterization of semiconductor and metallic nanowires are meeting the high expectations of nanotechnolgists. Although diamond has remarkable electronic and chemical properties, development of diamond nanowires has been slow, while the development of carbon nanotube-based technologies continues at a furious pace. Recently, the theoretical and experimenta...
متن کاملNanodiamond Tipped and Coated Conical Carbon Tubular Structures
Studies of diamond nucleation and growth on conical carbon tubular structures show that the nucleation preferentially occurs at the tips, but only occurs on the sidewalls when they are pretreated with diamond or other powder dispersions, forming a nanodiamond coating. The high-resolution transmission electron microscopy (HRTEM) studies reveal that the diamond nucleation on the sidewalls may pro...
متن کاملBody-centered tetragonal C4: a viable sp3 carbon allotrope.
We have investigated by first principles the electronic, vibrational, and structural properties of bct C4, a new form of crystalline sp{3} carbon recently found in molecular dynamics simulations of carbon nanotubes under pressure. This phase is transparent, dynamically stable at zero pressure, and more stable than graphite beyond 18.6 GPa. Coexistence of bct C4 with M carbon can explain better ...
متن کاملOnion-like carbon from ultra-disperse diamond
A new material containing macroscopic quantities of onion-like carbon (OLC) particles is produced by heat treatment of ultra-disperse diamond (UDD) powder (2-6 nm). Annealing products (characterized by high-resolution electron microscopy) are presented by: (a) quasi-spherical particles with closed concentric graphite shells, (b ) polyhedron particles with closed shells, (c) elongated particles ...
متن کاملDirect Laser Writing of Nanodiamond Films from Graphite under Ambient Conditions
Synthesis of diamond, a multi-functional material, has been a challenge due to very high activation energy for transforming graphite to diamond, and therefore, has been hindering it from being potentially exploited for novel applications. In this study, we explore a new approach, namely confined pulse laser deposition (CPLD), in which nanosecond laser ablation of graphite within a confinement l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 6 24 شماره
صفحات -
تاریخ انتشار 2014